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Chemical Graphs 

XXXIV. Five New Topological Indices for the Branching of Tree-Like Graphs [1] 

Alexandru T. Balaban 

Organic Chemistry Department, The Polytechnic, Bucharest, Roumania 

In order to find the centre of an acyclic connected graph (of a tree), vertices of 
degree one (endpoints) are removed stepwise. The numbers ~ of vertices thus 
removed at each step form a digit sequence S (pruning sequence) which reflects 
the branching of the tree. The sum of squares of digits in the sequence S affords 
a new topological centric index B = ~ 8~ for the branching of trees. Com- 
parisons with other topological indices are presented evidencing that B induces 
an ordering of isomeric trees distinct from those induced by all other indices 
devised so far, because B emphasizes equally branches of similar length. 

It is shown that Rouvray's index/is equivalent to Wiener's index w, and that the 
Gordon-Scantlebury index N2 and Gutman et al.'s index M1 belong to the 
same family, called quadratic indices, and induce the same ordering. 

Since all topological indices vary both with the branching and the number of 
vertices in the tree, four new indices are devised from B and M1 to account 
only (or mainly) for the branching, by normalization (imposing a lower bound 
equal to zero for chain-graphs, i.e. n-alkanes) or binormalization (same lower 
bound, and upper bound equal to one for star-graphs). Normalized and 
binormalized centric (C, C') and quadratic indices (Q, Q') are presented for 
the lower alkanes. From the five new topological indices, the centric indices 
(B, C, C') are limited to trees, but the quadratic indices (Q, Q') apply to any 
graph. Binormalized indices (C', Q') express the "topological shape" of the 
graph. 

Key words: Chemical graphs - Topological indices 

1. Notation 

n = the number of vertices in the tree, or of carbon atoms in the alkane; 
however, in "n-alkane" n stands for normal (linear). 
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X =  

p ( A )  = 

p ( a ,  k) = 

q = the number of  edges in the tree, or of C- -C bonds in the alkane; 
q = n - 1 .  

v~ = the degree of vertex i, or the number of carbon atoms bonded to carbon 
i, if  v, ~< 4 for any i, the tree is called a carbon tree (carbon skeleton of  
an alkane); ~ v~ = 2q = 2n - 2. 
the number of  vertices with degree v in the tree (graph). 
an ordered sequence of integer digits xl, xl, xl, x2, x3 . . . .  which may 
also be written as x~l, x~2 . . . .  when there are Yl digits equal to xl, Y2 
digits equal to x2, etc. (in the above example Yl = 3, Yz = 1, etc.). 
Examples for such sequences are 

P = the graphical partition of  vertex degrees, P = v~Vl, v~2 . . . . .  For  a tree 
with n vertices, ~ v~Vv~ = 2n - 2; or 

S = the pruning (lopping) partition of endpoints deleted in each step towards 
(from) the centre of the tree, S = 31, 32, �9 �9 3r = 1"1, 2 % . . . , j % . . .  ; 
for n-vertex trees, ~ 3~ = Zj jz j  = n. 
partitions of integer A. 
number of ways in which k edges in graph G may be chosen so that no 
two of  them be adjacent. 

U = [1 - ( -1)"] /2 ,  i.e. U = 0 for even n, and U = 1 for odd n. 

Other notation will be defined in the text. 

2. Introduction 

Topological indices for organic compounds attempt to express numerically topo- 
logical information for a given molecular or constitutional graph. Stereochemical 
features are usually being disregarded. This graph is the usual constitutional 
formula where atoms of valence >_-2 are represented by vertices, and covalent 
bonds joining these atoms are represented by edges; for a hydrocarbon this is the 
graph of the carbon skeleton of the molecule with the hydrogen atoms omitted, 
i.e. the hydrogen-depleted, or hydrogen-suppressed graph. 

From the various topological indices which have been proposed so far, and which 
have been reviewed in part by Rouvray [2], we mention in roughly chronological 
order the following: 

1. The Wiener numbers [3]: these are the path number, w, i.e. the sum of  the 
number of bonds between all pairs of vertices, and the polarity number, p, i.e. 
the number of pairs of vertices separated by three edges. For  acyclic graphs (trees), 
one may calculate w simply by multiplying together for each edge the two numbers 
of vertices of  the two moieties joined by that edge, and then summing the products 
for all edges (cf. also No. 4 below). Correlations with boiling points, heats of  
formation and vaporization, molecular volume and molar refraction for alkanes 
have been described [3, 4]. Platt [4] introduced a third index,f(first-neighbour sum) 
which is calculated by determining for each edge the number of adjacent edges, 
and then summing these numbers for all edges (cf. No. 3 below). 



Chemical Graphs 357 

2. Smolenskii's index [5] for Tatevskii's functions [6]: 

q 

f(G) = ao + ~ ar:X~, 
k = l  

where ao and a~ are experimentally determined constants for the additive property 
under investigation, Xk is any section which contains k edges of the graph G having 
a total number of q edges. Tatevskii's contributions [6] do not contain any graph- 
theoretical formalism (cf. also [7]) but Smolenskii showed [5] the equivalence of  
Tatevskii's approach to this formalism. 

3. Gordon and Scanflebury's index [8] N2, i.e. the number of distinct ways a 
C - - C - - C  fragment may be superimposed on the carbon skeleton (hydrogen- 
depleted graph). It can be shown that N2 = f /2  (cf. No. 1 above). On dividing 
N2 by 2(n - 0,1 where n is the number of vertices in the graph, or of carbon 
atoms in the hydrocarbon, another index is obtained [8], which may be used for 
comparing the branching of alkanes having different n values, and which for 
linear alkanes approaches i as n increases towards infinity. 

4. Altenburg's modification [9] of Wiener's index w = ~ ig, consists in the 
expression ~, g,a, depending on the indexed variable a~ where g~ is the number of 
pairs of vertices whose distance is i, i.e. which are separated by at least i edges. 
Wiener's and Altenburg's expressions, originally devised for acyclic graphs (trees) 
may be extended to cyclic graphs [10]. The variable a, has no special significance; 
it is introduced only for enumeration in polynomial form. 

5. H osoya's index [10] Z, defined a s :Z  = ~ =  0 p(G, k)wherep(G, k)is the number 
of ways in which k edges of graph G may be chosen so that no two of them are 
directly connected; alternatively, Z may be defined for trees as the sum of the 
absolute values of coefficients in the characteristic polynomial using as variable x: 

( -  1)kp(G, k)x n-2~ = ( -  1) ~ det ld - xEI, 
/ c = 0  

where s is the largest number of edges disconnected to each other in the tree-like 
graph, and E is the unit matrix. As known from graph theory (Harary's book 
quoted below under Ref. [35] is the standard text), the characteristic polynomial 
may be easily obtained from the adjacency matrix A by inserting x's on the main 
diagonal and resolving the matrix as a determinant equal to zero. 

Hosoya's index has found many applications (e.g. correlations with boiling points, 
entropies, or calculated bond orders, as well as for coding of chemical structures) 
[10-13] and has been reported for numerous acyclic [12] and cyclic graphs [13] 
in the form of extensive tables. 

1 Formulations used here differ from the original ones [8]: originally 3[2 was the second 
moment of distributions for the number of units with degree of substitution i in thejth n-isomer, 
and 2(n - 1) was the first moment of distributions. 
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6. Hosoya's distance polynomial [14] ( -  1)" det [D - xE[, where D is the distance 
matrix having as entry D~j the number of edges in the shortest path between vertices: 
D~ s is called the distance between vertices i and j. 

7. Gutman et aL's [15] index MI (which was also denoted [16] as Z) 

MI= ~ v~, 

where v~ is the degree of vertex i in the hydrogen-suppressed graph. Muirhead's 
criterion [17] for the comparability of functions was subsequently used [18] to 
discuss the concept of branching and the possibility of comparing graphs with 
different branching patterns. It is worth mentioning that Ruch et al. [19] used 
Muirhead's criterion for comparing Young partition diagrams, and that the same 
criterion was employed by Randi6 et al. [20] for recognizing structural similarity 
in molecules. 

8. Randid's index [16] chi, X, which was also denoted [15] as M2 because it has a 
common origin with the preceding index, is defined as 

X = ~ (v,vj) -~'2, 
q 

where v~ and v~- are the degrees of the two ends of an edge in the hydrogen-suppressed 
graph, and the summation is extended over all q edges. For the uses of X, see below 
under No. 10. 

9. Randi6's translation into binary notation of the adjacency matrix by a unique 
non-subjective numbering of vertices in a graph parallels the ordering induced in 
alkanes by X. The underlying idea was to permute rows and columns of the 
adjacency matrix until on reading sequentially the rows, the smallest number 
results. Since entries in the adjacency matrix A are 1 for adjacent and 0 for non- 
adjacent vertices, the result is a binary number. Thus a unique form of the adjacency 
matrix is found for a graph, leading to a unique numbering of vertices and to a 
linear binary notation for the graph. This binary number is conjectured to be a 
unique cipher for the topology of the graph [21 ], but it is too large and cumbersome 
(even after conversion into decimal notation) to be used as a normal topological 
index. 

10. Kier et al.'s [22-29] generalized index n X or M~+~, where h >/2 is the length of 
a path (an edge is a path of length one). I f  the summation indicated above under 
No. 8 for Randi6's index (which may also be written as ~X) is extended from an 
edge to a path of length h over all possible such paths in the hydrogen-suppressed 
graph, the generalized index results h x = ~ (vlv2...vh+l) -112, where vl, v2 . . . . .  
vn + ~ are the degrees of vertices in the path of length h. Alternatively, h x may be 
obtained from the hth power of the adjacency matrix A n [29]. 

In practice, only x, 2x, and 3 x have been used: x gives good correlations with 
boiling point [22], the oil-water partition coefficient [23], enzyme inhibition [24], 
and with physiological properties such as barnacle larvae narcosis [23], tadpole 
inhibition [23] and anesthetic activity [25-28]. For density correlations, either 
1Ix or 8 X had to be used [29]. 
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11. Rouvray's index, I [30], obtained by summation of all entries in the distance 
matrix D. Evidently, I = 2w (cf. No. 1 above). 

12. Lovasz and Pelikan's observation [31] that the largest eigenvalue of the charac- 
teristic polynomial is a measure of branching led to the use of this eigenvalue as 
a topological index. 

13. Bonchev and Trinajsti6's indices [32] based on the information content of a 
set of numbers associated with a graph: the information on polynomial coeff• 
cf. No. 5 above, 

I~,c = Z log2 Z - ~ p( G, k) log2 p( G, k); 

the information on the distribution of distances in the graph G, 

I DE = [n(n - 1)/2] log2 [n(n - 1)/2] - ~ k, log2 ki, 
t 

where distance i appears 2k~ times in the distance matrix; the information Ig 
on the partitioning of the Wiener number w = ~ ig, expressed by I~ = w log2 w - 
~..~ ig~ log2 i, as well as the mean values of the above three indices: ipc, 1~, and i~. 
It was found [32] that ig reflects accurately the main features of branching, even 
for different n values, and that both lg and Ig discriminate efficiently among iso- 
meric alkanes: in fact, I~ is more discriminating than w. 

The authors [32] present a very lucid discussion of the concept of branching and 
they outline several rules of branching, indicating how branching increases when 
the structure is modified by altering the number, length, and position of branches. 

All the above indices are topological (or semitopological in the case of Smolenski's 
index). However, empirical indices have also been used, like Kovats' index for 
correlating retention times in gas-liquid chromatography [33], but such empirical 
indices will not be discussed further here. 

With two possible exceptions, the above topological indices do not characterize 
uniquely the topology of a constitutional graph, but are more or less degenerate. 
The two exceptions are Randi6's reordered adjacency matrix read sequentially 
(No. 9), and, according to Hosoya's conjecture, the distance polynomial and the 
numerical data obtained therefrom (No. 6). The degree of degeneracy for the 
remaining indices is lower with indices I~, x, and Z in this order, with I~ having the 
lowest degeneracy. Most indices may be applied to any graph, but in certain cases 
there may be restrictions. Some indices are by definition integers, while x, hX and 
informational indices are usually non-integer numbers. 

3. Partitions of the Number n of  Vertices in a Tree by Deletion of  Endpoints towards 
(from) Its Centre 

For trees it is well known in graph theory [34, 35] that a unique centre exists, be 
it a vertex or an edge. In the latter case, the pair of vertices connected by the edge 
may also be called a bicentre. The history of the independent discovery by Jordan 
and by Sylvester that every tree has a unique centre is presented in books by 
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Kfnig  [34], and Harary [35a]. This property of trees was used by Neville [36], 
and more recently by Read [37] and Lederberg et al. [38] for codifying uniquely 
the structure of acyclic chemical compounds in linear notation systems or in 
computer programs, without resorting to elaborate conventions as in usual linear 
notation systems like Wiswesser's [39] or Dyson's [40]. As shown in the present 
paper, this property may also be used for obtaining a topological centric index 

for trees. In the following, the tree we shall use will be the hydrogen-suppressed 
constitutional graph of  an alkane. 

In order to find the centre or bicentre of  a tree, each of the vertices of  degree one 
(endpoints) and its incident edge are deleted, the operationg being repeated till the 
centre (bicentre) is left. We will call this operation pruning 2 the tree, and we shall 
denote by 81, 82, . . . ,  8, the number of endpoints deleted in the first, second . . . .  , 
last (rth) stages of  pruning. The number r of stages is called, following the usual 
graph-theoretical definitions [35a], the radius of the tree, or the minimum eccentri- 
city. For instance, the two tree-graphs I and II (Table 1), both with seven vertices, 
which symbolize two isomers of C7H16, may be seen to lead in r = 3 stages to a 
centre for I, and to a bicentre for II. 

I f  the numbers 8~ of  endpoints deleted in each stage of the pruning are taken into 
account (as indicated on the margins of Table 1), then the reversed sequence 
S = 3r, 8r_1, . . . ,  82, 31 of these numbers, starting from the centre (bicentre) 
towards the initial graph, depends on the topology of the branching. Thus for I, 
S = 1, 2, 4 and for II, S = 2, 2, 3. The sequence S is automatically arranged in 

Table 1. Finding the centre (bicentre), symbolized by black points, of trees. The dotted edges 
connect vertices (symbolized by white points) which were removed in previous steps. Trees I 
and II correspond to heptane isomers d and g, respectively, from Table 3 

3x=4 o ~  o ~ / o  8x=3 

1 1 1 
3~=2 . Q . . . ~ . .  ...Q..........~ . 8~=2 

~a = 1 .-"a'"o-'*". . . ) . . . . . . . . .  -- ~"" 8a = 2 

S=  1,2,4 S = 2 , 2 , 3  
B=21 B=17  

I II 

Synonym: lopping. 
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non-decreasing order because the number of branches cannot decrease when 
starting from the centre of a connected tree (otherwise a disconnected graph i.e. 
a forest in graph-theoretical language, would result). Commas will be used to 
separate the digits (numbers) in sequence S and in subsequent sequences. We will 
call sequence S the pruning partition a of n (cf. item b below). 

The following general remarks may be made for sequence S: 
a) The first digit is always either 1 (for trees with a centre) or 2 (for trees with a 
bicentre). In the former case the longest chain is odd-membered whereas in the 
latter case it is even-membered. 
b) Since all vertices must be accounted for in the pruning process, the pruning 
sequence S represents a partition of n. Any such partition may be translated into a 
tree by reverting the pruning process, provided that: 

(i) There is at least one digit 1 (for a centre) or 2 (for a bicentre), cf. item a above; 
this condition follows from the fact that every tree has a centre or a bicentre. 

(ii) There is at most one digit 1, since there is only one centre in a graph; this 
condition follows from the fact that when at a stage in the pruning process only 
one vertex is left, the pruning stops because the centre has been reached. 

c) For carbon trees, in which vertices of degree higher than four are not allowed, 
there exist further restrictions for pruning partitions, among which we mention: 

-parti t ions with two digits of type 1, x must have x ~< 4; 
- partitions with two digits of type 2, x must have x ~< 6; 
- partitions with three digits of type 1, 2, y must have y ~< 8; 
-parti t ions with three digits of type 1, 3, y must have y ~< 10; 
-part i t ions with three digits of type 1, 4, y must have y ~< 12; 
-parti t ions with three digits of type 2, x, y must have 2 ~< x ~< 6 and 

y ~ < 2 x + 6 .  

In a single formula, all the above restrictions may be formulated as follows for 
partitions S of type u, x, y (where y may be zero): u is either 1 or 2; 2 ~< x ~< 2u + 2; 
y~< 2 u + 2 x + 2 .  

Table 2 presents for all alkanes (carbon trees) with n ~< 10 the sequences S and, 
as exponent in brackets, the number of non-isomorphic trees having the same 
sequence S. When a sequence S corresponds only to one isomer, exponent (1) 
has been omitted from Table 2. The carbon trees with n = 7 are illustrated in 
Table 3, and those with n = 8 in Table 4. 

4. A New Centric Index B for the Branching of Trees 

In order to obtain from the pruning partition (sequence S) an operational tool for 
comparing the branching of trees, two possibilities exist (analogously, on the basis 
of another sequence, the graphical partition of vertex degrees, symbolized by 

3 Synonym: lopping partition. 
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T a b l e  5. Ordering of trees with given graphical partitions P on the basis of Muirhead's 
criterion. Trees III, IV, and V correspond to octaneisomers a, i, and e, respectively, from 
Table 4 

(III) 414 I 

(IV--2 

4+4+1 > 4+2+2 

4+4+1+1 = 4+2+2+2 

etc. = etc. 
Therefore, (Ill) > (IV) 

III IV V 

1 1 1 1  

1 1 1 1  

I 
(III) 4 4] 1 

I 

(V)4> 1 3 / 3  

4+4 > 3+3 ] 

4+4+1 = 3+3+3 
etc. = etc. 

Therefore, (III)> (V) 

1 1 1 1 1  

1 1 1 1 1  (v~ 3 3 1 1 1 1 1  

4 >  

4+2 = 3+3] 

4+2+2 < 3+3+3 
Muirhead's inequality is not 
satisfied, therefore (IV) and 
(V) are not comparable and 
thus cannot be ordered rela- 
tive to one another. 

P = vl, v2 , . . . ,  vn, both possibilities had been explored by Gutman et  al. [15, 18]: 

1) The first of  these possibilities is to order trees according to a well-defined 
criterion, without defining a topological measure, or numerical index, for branch- 
ing. It was argued [18] that only trees with the same n should be compared, and 
that even in this case an ordering of trees can only be made (in the case of partition 
P)  if Muirhead's criterion for the comparability of functions is satisfied. This 
states that in two sequences in non-ascending order a~, a~ . . . . .  a~, and al, a2 . . . . .  
a~, with ~ =  1 a~ = ~ =  i a~, the former sequence is comparable to, and precedes, 
the latter if for all 1 <<. i <, k ,  Muirhead's inequality is obeyed, i.e. ~ a~ /> ~ a~. 
We illustrate in Table 5 this criterion for three isomers of octane taken from Ref. 
[18] with the graphical partitions 42, 16 (for III), 4, 2 a, 14 (for IV), and 33, 15 (for V). 4 
The result is expressed by the inequality III > (IV, V), i.e. on applying this criterion 
graph III precedes graphs IV and V, but the latter graphs IV and V cannot be 
ordered relative to one another. 

2) The second possibility is to use the numbers in the given sequence by converting 
them into a topological index, which can be used both for ordering as in (1), and 
in quantitative correlations. Thus from the graphical partition P, index M~ was 
obtained [15] (cf. No. 7 above). 

There exists a correlation between the orderings derived from partition P and 
those introduced in alkanes by procedures l) and 2), but the correlation coefficient 
is poor, as evidenced by the results in Table 6. 

In this abbreviated notation, the exponent indicates how many times one and the same 
digit is repeated. 
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Table 6. Differences between the ordering of trees according to Gutman et al.'s topological 
index [15] M1, and according to Muirhead's criterion by Gutman and Randi6 [18] 

n M1 (Ref. [15]) (Ref. [18]) Pairs of graphical partitions P 

8 Same Same 4 2, 16 and 5, 2 2, 15; 4, 2 a, 14 and 3 a, 15 
9 Same Same 5, 2 3, 15 and 4 2, 2, 16; 4, 2 4, 14 and 3 a, 2, 15 

10 Same Same 4, 2 5, 14 and 3 3, 2 2, 16; 5, 3, 2 2, 16 and 4 2, 3, 17 

9 Different Same 6, 2 2, 16 and 5, 4, 17 
10 Different Same 7, 2 7, 17 and 6, 4, la; 6, 3, 2, 17 and 5 2, 1 a 
10 Different Same 6, 2 3, 16 and 5, 4, 2, 17; 4, 3, 2 3, 15 and 3 4, 16 

10 Same Different 4, 3, 2 3, 16 and 4, 3 2, 2, 16 

In  the present  case we want  to replace sequence P by S. Both approaches  1) and 
2) were tested, and it appeared  that  the latter gives bet ter  results. For  carbon trees 
with n ~< 9 vertices, procedures  1) and 2) induce the same ordering; by using 
Mui rhead ' s  cri terion 1), non-comparab le  parti t ions S which cannot  be ordered 
relative to one another  appear  for  carbon trees with n >/9 :  5, 2, 2 and 4, 4, 1 
(n = 9, same B). Fo r  n = 10, however,  2) appears  to be more  discriminating as 
indicated by the following non-comparab le  part i t ions S: 4, 2, 2, 2 and 3, 3, 3, 1 
(same B); 6, 2, 2 and 5, 4, 1 (different B values);  4, 4, 2 and 5, 2, 2, 1 (different B 
values). Parti t ions S were rearranged in non-increasing order  for applying Muir-  
head 's  criterion. Indices B may  be found in Table  2 for  all above parti t ions,  
according to the definition of  B which follows. I t  thus appears  that  procedure  1) 
is less discriminating than  2). 

In  order  to obtain a convenient,  numerical,  t ransform of  the pruning part i t ion 
(digit sequence S) a new topological  index B for  the branching of  trees is defined 
by summing  the squares of  all numbers  in sequence S: B = ~ = 1  8~. 

Tables  1--4 display, in addit ion to sequences S, the index B obtained according to 
the above formula.  I t  may  be seen that  for  a given n, the higher the value of  B, 
the more  branched the tree. Therefore  B may  serve as a topological index for  the 
branching of  trees, as will be presented in more  detail in the next section. Because 
of  the way it is derived, it will be called the centric index B. 

5. Comparison between Topological Indices 

Table  3 presents several other topological  indices, including index B for  each isomer  
of  heptane.  Some indices f rom Table  3 increase (N2,f ,  M1, B), while others (w, I, Z , )  
decrease with increasing branching (index p is also included in order  to show that  
it does not  correlate with branching, but  ra ther  with steric interference [4]. 

There  exists a rich li terature on graphs with a given part i t ion of  vertex degrees, 
i.e. with a given sequence P, e.g. a whole chapter  in Ha ra ry ' s  book  [35b]. The sum 
of  vertex degrees v~ for a tree on n vertices is ~ v~ = 2q = 2n - 2; however,  only 
relatively few of  the possible p(2n - 2) part i t ions are graphical parti t ions P = 
vl, v2, �9 �9 v~, i.e. correspond to actual graphs. The  sequence P of  vertex degrees, 
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Table 7. Comparison of indices B. MI, C and Q for the most branched 
(star-graph) and the least branched (chain-graph) trees with n vertices ~ 

Partition and index Star-graph Chain-graph 

Graphical partition P n - 1, 1 n-1 2 ~-2, 12 
Index M1 n 2 - n 4n - 6 
Index Q (n - 2)(n - 3)]2 0 

Lopping partition S 1, n - 1 U, 2 (~- ~r~12 
Index-B (n - 1) 2 + 1 2n - U 
Index C [(n - 2) 2 - 2 + U]/2 0 

u = [1 - (-1)"]/2, i.e. U = 0 for even n, and U = 1 for odd n. 

which leads to index M1, is appreciably longer than the sequence S which leads to 
index B; therefore the latter sequence S is written in full in Table 3, whereas the 
former  sequence P has been abbreviated, e.g. 3, 2, 2, 2, 1, 1, 1 to 3, 23, 13. Note  
tha t  in this conventional abbreviation the exponents have no brackets. 

The topological index B has, among  all other indices known earlier and included 
in Table 3, the closest similarity to M1. Both B and M1 are derived analogously 
f rom sequences o f  digits: M1 is based on the graphical partit ion P o f  vertex degrees, 
while B is based on the pruning parti t ion S. For  trees with n vertices, the sums of  
digits in sequences are 2n - 2 for P, and n for S. Obviously, for  a given n, p(n) < 
p(2n - 2), in other words the numbers  o f  mathematically possible sequences are 
larger for  P than for S. I t  would be interesting to study as extensively the construc- 
t ion o f  graphs with given pruning partit ion S, as the analogous problem for given 
graphical parti t ion P. It  seems that the rules for knowing which pruning partitions 
can, or cannot,  be converted into trees (or into carbon trees, with further restric- 
tions) are much simpler than for graphical partitions. To find an enumerat ion 
formula  for pruning partitions with given n either for trees or for carbon trees is 
an interesting and unsolved problem. Another  similar problem would be to find 
an enumerat ion formula,  and a construction procedure (which is an easier task), 
for  obtaining all o f  the possible non-isomorphic  trees with the same pruning 
partition. 

Table 8. Ordering of carbon trees a-i with n = 7 
induced by topological indices from Table 3 

Indices Order of carbon trees with n = 7 

B, C, C' a(bcde)f(gh)i 
M1, f, N2, Q, Q" a(bc)(de)(fgh)i 
w, I ac(be)(df)hgi 
I~ acbedfhgi 
Z ,  lye abdceghfi 
x abcdeghfi 
I~ acebfdhgi 
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Examination of Table 2 reveals that for carbon trees with n ~< 8 the numbers of  
pruning and graphical partitions are equal (excepting n = 6) and that for n = 9-10 
the number of  pruning partitions is larger than the number of  graphical partitions. 
Since each partition corresponds respectively to a certain value of index B or M1, 
if follows that for a given n in the range 8 to about 12 (the highest n value we 
tested), the index B discriminates more effectively among isomeric carbon trees 
than the index M1. Actually, if  all trees (not only carbon trees) are taken into 
account, the numbers of  allowed partitions for a given n are always greater for P 
than for S, as shown in the last two columns of Table 2. The reason why the 
converse is true for carbon trees with n = 8-10 (and presumably also for a few 
higher n values) is as follows: whereas carbon trees may have no digits larger than 
four in sequence P, they may in sequence S. On passing from all trees to carbon 
trees, one has to exclude those trees whose sequences S do not obey the rules 
indicated under item (c) in the Sect. 3, e.g. sequences of  types 1, x . . .  and 2, y , . . .  
with x > 4 and y > 6. These are fewer in number than sequences in P which 
contain numbers larger than 4, and which are also to be excluded on passing from 
trees to carbon trees. Indeed, on comparing the last four columns of Table 2, one 
may see that the differences are larger for P than for S on passing from trees to 
carbon trees. Thus for carbon trees with n lower than about 12, the sequences S 
(and hence the index B derived therefrom) offer certain advantages over sequences 
P and the derived index M1. 

Moreover, as it emerges from Tables 3 and 4, for a given n the range of variation 
for B is about twice as large as that for M1. This is demonstrated by Table 7 which 
presents the indices B and M~ for the most branched tree on n vertices (the star- 
graph formed by one vertex of degree n - 1, linked only to vertices of degree one) 
and the least branched tree (the chain-graph, i.e. an n-alkane). For  convenience, 
in Table 7 both sequences (pruning and graphical partitions) are presented in 
abbreviated form, with exponents indicating how many times the same digit is 
repeated in the sequence. 

I t  is apparent from Table 7 that for chain graphs the B index is about half as large 
as the M1 index, whereas for highly branched graphs like the star graph both 
indices have almost equal values; asymptotically this becomes rigorously true, i.e. 
when n---~oo one has to replace " a b o u t "  and "a lmos t "  by "exact ly"  in the 
previous sentence. 

In other respects, B and M1 are rather similar: their range of variation for a given 
n overlaps with ranges for higher and lower n, but when comparisons are made for 
the same n value this feature is no drawback. 

A comparison between all topological indices from Table 3 is provided by Table 
8 which illustrates the ordering induced among carbon trees with n -- 7. I t  may be 
seen that indices M~ and N2 on one hand, and completely equivalent indices on 
the other hand (N2 and f ,  w and / ,  which are written on the same line to save space) 
induce the same ordering. Also, it appears that though no index from Table 3 
determines unambiguously the topology of a graph, indices Z, X, and the informa- 
tional indices have the smallest degeneracy, i.e. are the most discriminating ones. 
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Though the seven distinct orderings from Table 8 all start with tree a and end with 
tree i (both with n = 7), there exist definite differences between these orderings. 
Thus, indices w,/ ,  IT and Ig place c next after a, indices Z, Ipc and x place b next 
after a, while the remaining indices (B, M1, N2,f)  do not discriminate among b and 
c in this respect. Furthermore, indices w, I, IT and/DE place g immediately before 
i, indices Z, Ipc and X place f immediately before i, while N2, f ,  and 3/1 do not 
discriminate among f and g, but index B definitely places f before g or h. 

Similar conclusions may be reached by examining the carbon trees with n =8  
presented in Table 4, which concentrates on fewer indices than Table 3, namely 
B, M1 and Nz (in addition to new indices which will be presented in the next 
section). The parallelism between Gutman et al.'s index M~ and Gordon-Scantle- 
bury's index N2 is again evident. While index B induces the following ordering of 
trees with n = 8: a(bcde)(fg)(hijklm)n(opq)r, indices M1 and N~ induce the order: 
a(bcd)(efhi)(gjklm)(nopq)r; for comparison, other indices induce the following 
orderings: Z: acd ( b i )e( hk )lm( f g )(jq )opnr ; IT: abdf echgjmilnkopqr ; I~ : abdf ecghjm 
lnikopqr; Ip~: acdibekhlmgqofjpnr. 

Thus, while indices M1 and Nz result in the same weight for branches of lengths 1 
and 2 on a longer chain, which is certainly wrong, index B gives a larger weight to 
the longer branch (compare trees f,  g, h with n = 7, and trees n, o, p, q with n = 8). 
On the other hand, index B is the same for two isomeric alkanes which have the 
same number of equal short branches on a longer chain, no matter how these 
branches are attached; however, indices M~ and N2 in this case are lower when the 
branches are attached to different vertices, and higher when they are attached to 
the same vertex (geminal branches); on the other hand, neither B, nor M1 and 
N2, are able to discriminate between trees having the same types of branches in 
various positions (e.g. trees j, k , / ,  m with n = 8 from Table 4). For the purpose of 
such a finer discrimination, Z, x, or I~ must be employed. 

The above discussion illustrates the value of the new index B. Since the sequence S 
on which it is based starts with the centre of the tree, and includes the numbers 
3~ of endpoints deleted at each pruning stage, B reflects the topology of the tree 
as viewed from the centre; this is why the name centric index was adopted. 

The reason why indices Mz and N2 always induce the same ordering of trees is 
that they ascribe a larger weight to vertices of higher degree. Let V~ denote the 
number of vertices with degree v (for carbon trees, 1 ~< v ~< 4). Evidently, ~ =  ~ V~ 
= 2n - 2. According to the definition (cf. No. 7 in the introductory section), 

M~ = 16V~ + 9V3 + 4112 + V~. 

It  can be demonstrated that the number of ways a C - - C * - - C  fragment may be 
superimposed on a carbon tree so that the central C* coincides with a vertex of 
degree v, is (~,), i.e. 6 for v~ = 4 and 3 for v~ = 3. Therefore we may write (cf. No. 3 
in the Introduction) 

N2 = 6 V~ + 3 V3 + I12. 

Thus, both M1 and N2 belong to the same class of topological indices whose general 
expression is ~ = i  V~f(v) where f (v)  is a quadratic polynomial in v: for M~, 
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f ( v )  = v2; for N2, f ( v )  = (v 2 - v)/2. We call therefore both 3/1 and Nz as belong- 
ing to the class o f  quadratic indices. The polynomialf(v)  must be at least quadratic, 
since otherwise there would be no discrimination among isomers, e.g. withf(v) = v, 

one obtains the graphical partition P instead of a topological index, and it does not 
discriminate among isomers because its sum is 2n - 2, the same for all isomers. 
The referee has pointed out that the use of  higher powers for v than 2 may also 
lead to conflicting results, e.g. for the sequences S = 6, 2, 2, 1 and 5, 5, 1 index B 
is greater for the second sequence, but if the fourth power were used instead of the 
square, the situation would be reversed (by the Mui rhead -Ruch  criterion, these 
two partitions are incomparable). 

6. Normalized and Binormalized Centric ((7, C') and Quadratic (Q, Q') Indices 

All topological indices discussed in the Introduction vary both with the branching 
and with the number n of  vertices, e.g. w 1Is is a sort of  mean molecular diameter of  
an alkane [4]. In some applications, as will be indicated below, we need to eliminate 
the variation due to n, i.e. we wish to know if the tree looks like a snake (chain- 
graph), a hedgehog (star-graph), or a hybrid therefrom. Dividing w by n - 1 
as indicated [8] does not solve completely the problem. 

We normalize  a topological index by imposing for all graphs (regardless of  n) the 
same lower bound, equal to zero for the least branched graph (chain-graph). 
Normalized indices, which are integers when they are derived from integer initial 
indices, still show a variation with n and with shape, therefore we binormalize 

topological indices by imposing, in addition to the above lower limit, the same 
upper bound equal to one, for the most branched tree (star-graph). Binormalized 
indices are integers only for the chain and star graphs, and for carbon trees they 
tend to decrease with increasing n when they have the same type of branching 
(this is because the higher the n value, the higher the denominator in the bi- 
normalized carbon-tree index). A prime symbol ('), added to the symbol of  the 
normalized index, will be used to indicate binormalized indices. 

Let X be a given sequence of integers: X -- x~l, x~2,. . ,  if yl values equal to x~ 
are present, Y2 values equal to x2, etc. Let us assume that from this sequence a 
topological index was obtained by using a quadratic formula, e.g. index B from 
sequence S, or indices M1 and N2 from sequence P. From sequence X, a normalized 
index can be obtained in two ways: either by devising a new quadratic formula 
for obtaining automatically the value zero for the chain graph, or by subtracting 
from the index obtained by the usual, earlier, definition of the quadratic formula, 
the index of the chain-graph obtained by the same procedure. We shall demonstrate 
that both ways lead to the same result, allowing the definition of new indices. 

For any graphical partition P = lVl, 2v2 . . . . .  i v, . . . .  we have ~ iVi = 2n - 2. 

The chain-graph (Table 7) has partition P (chain) = 2 "-2, 12 and its index after 
Gutman et al. [15] is M1 = ~ , iV~ = 2 + 4(n - 2) = 4n - 6. 

I f  we wish to find a normalized quadratic index, which will be denoted by Q, we 
have to find a quadratic function of the general form (where the constants A and 
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c must  be determined):  Q = ~ (i 2 + ei)V~ + A which for  the chain-graph should 
give Q = 0. I t  results that :  (n - 2)(4 + 2c) + 2(1 + e) + A = 0 or, on rearrang- 
ing, n(4 + 2e) - (2e + 6 - A) = 0. In  order  that  this expression be independent 
o f  n, we must  have 4 + 2e = 0 and 2e + 6 - A = 0. I t  follows that  e = - 2 and 
that  A = 2. Thus the normalized quadratic index may be defined as 

Q =  [ ~  (i2 - 2i)V~ + 2][2 

where V~ is the number  o f  vertices with degree i in the graph. 
I t  f o l l ows tha t2Q  = ~ i2V~ + 2 - 2 ~ iV~ = ~ i2V~ + 2 - 2(2n - 2) = :~, i2V~ 
- (4n - 6) = Ml(graph)  - Ml(chain-graph),  proving that both approaches have 
led to the same result. 

Fo r  compar ison with the expressions derived in the preceding section for M1 and 
N2, it should be ment ioned that  for  carbon trees, the normalized quadratic index 
is Q = (8V4 + 3V8 - 111 + 2)/2. 

Since for  any carbon tree on n vertices we have 

/ I 1 = 2 +  Va + 2 V4 and V2 = n - 2 - 2 Vs - 3 V4, 

(as it results immediately f rom V~ + 112 + 113 + V4 = n, and f rom 4V4 + 3V3 + 
2V2 + V~ = 2q = 2n - 2), the three expressions for 3//1, N2 and Q can be written 
as functions o f  only V3 and V4: 

M1 = 1 6 V 4 + 9 V s + 4 V 2 +  Vx = 2 ( 3 V 4 +  /I3) + 4 n - 6 ;  
N 2 =  6 V 4 + 3 V a +  V2 = 3V~ + V3 + n - 2 ;  

-8 V, Q =  4 V , + 2  a + l  - �89 V~ = 3 V~ + Va. 

I t  may  be seen that  all three quadratic indices M~, N2 and Q are interrelated by the 
equat ions:  

Q = ] 7 2 - n +  2 =  3 - 2 n +  M1/2; M1 = 2 ( N 2  + n -  1). 

For  any pruning partit ion S = i~1, 2~2 . . . . .  flJ . . . .  we have ~ j j z j  = n. The chain 
graph has parti t ion S(chain) = U, 2 <"- v)/2, where U = [1 - ( -1 ) " ] /2 ,  and its 
index B = ~j jz~ is B(chain) = U + 2(n - U) = 2n - U. I t  can be demonstrated 
as above that  the expression for a normalized eentrie index, denoted by C, is 

C =  [ ~  (jg - 2j)zj + UI /2  = (B - 2n + U)/2. 

I t  follows that  2C = ~j j2z j  - 2 Z j j z j  + U = Y~jj2zj - (2n - U) = B(graph) - 
B(chain), again demonstrat ing convergence o f  bo th  approaches. 

For  obtaining binormalized indices, we divide Q and C by their respective values 
for  the star-graph (cf. Table 7), and obtain:  

(j2 _ 2j)zj + U B -  2n + U 
Binormalized centric index C '  = j ( n -  2) 2 - 2  + U = ( n - 2 )  2 - 2 +  U; 

(i 2 - 2i)V~ + 2 

Binormalized quadratic index Q'  = ~ (n - 2)(n - 3) 
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Values for all four new normalized and binormalized indices C, C',  Q, and Q' 
for the trees with n = 7 and 8 vertices are presented in Tables 3 and 4, respectively. 
The centric indices (C, C')  parallel the ordering induced by index B, while the 
quadratic indices Q and Q' induce orderings which parallel those due to the other 
quadratic indices, M~ and N2. 

Whereas the binormalized centric index C' is limited to trees (because only trees 
have a unique centre), the binormalized quadratic index Q' may be calculated for 
any graph. In the case of graphs with cycles, Q' values higher than 1 may be 
possible, e.g. for a ring on n vertices, Q' = 8n/(n - 2)(n - 3), and for a cubic 
graph where all vertices have degree 3 like the valence isomers of annulenes [41], 
Q' = 18n/(n - 2)(n - 3). Thus for regular graphs of degree 2 or 3 on less than 
12 vertices, Q' > 1. 

There is a discussion in the literature about the theoretical basis of determining the 
geometrical structure and shape of molecules [42]. The quadratic and centric 
binormalized indices Q' and C' for trees give information on the "topological 
shape" and on the "molecular volume" of the tree: for both binormalized indices, 
their values indicate how much hybridization between the "snake shape" (chain- 
graph, with C' = Q' = 0) and the "hedgehog shape" (star-graph, with C' = 
Q' = 1) is present in the given tree. Differences between C' and Q' mirror the 
differences between indices B and Mt which were discussed in the preceding 
section. 

7. Applications and Extensions 

The anti-knock ability of alkanes in combusion engines is measured by their 
octane numbers, which depend both on the number n of carbon atoms and on 
branching. Linear correlations between each topological index discussed in the 
present paper and the experimentally determined octane number were tested 
separately for all isomers of heptane on one hand, and of octane on the other hand 
(these are the largest alkanes where octane numbers are known for practically all 
their isomers). The results, which will be presented in detail elsewhere [43] show 
that among all indices discussed in the present paper the centric indices give the 
highest correlation coefficients. 

For comparing octane numbers of all alkanes with n = 4-8, linear biparametric 
correlations with n and a toplogical index were tested with all above indices. The 
statistical analysis (correlation coefficient, standard deviation, Fischer statistics, 
and explained variance) shows satisfactory results with several indices including 
the centric and quadratic indices; the normalized and binormalized indices have 
for n the smallest coefficients in these biparametric correlations, proving that the 
(bi)normalization eliminates most (though not all) of the variation of octane 
number due to the number of carbon atoms [43]. 

An extension of the notion of centre to cyclic graphs is possible. It will be published 
separately together with derived centric topological indices for cyclic graphs, 
including informational cyclic indices [44]. Applications of this extension of centre 
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to  cyclic graphs  for  the purpose  o f  chemical  coding and  documenta t ion  will be 
cons idered  [45]. 

A review on corre la t ions  between chemical  s tructure and biological  activity,  
inc luding a chapte r  on corre la t ions  with topologica l  indices, is in press  [28]. A 
review on mathemat ica l  models  o f  b ranch ing  is in press [46]. 

Acknowledgements. Thanks are expressed to Drs. Milan Randi6, Dennis H. Rouvray, and 
Danail Bonchev for their valuable comments on the manuscript of the present paper. 

References 

1. Preceding part, Balaban, A. T. : Rev. Roumaine Chim. 23, 733 (1978) 
2. Rouvray, D. H.: Am. Sci. 61, 729 (1973) 
3. Wiener, H.: J. Am. Chem. Soc. 69, 17, 2636 (1947); J. Chem. Phys. 15, 766 (1947); J. 

Phys. Chem. 52, 425, 1082 (1948) 
4. Platt, J. R.: J. Chem. Phys. 15, 419 (1947); J. Phys. Chem. 56, 328 (1952) 
5. Smolenskii, E. A.: Zhur. Fiz. Khim. 38, 1288 (1964) 
6. Tatevskii, V. M.: Khimicheskoe stroenye uglevodorodov i zakonomernosti v ikh fiziko- 

khimicheskikh svoistv. Moscow 1953; Tatevskii, V. M., Benderskii, V. A., Yarovoi, S. S." 
Metody rascheta fiziko-khimicheskikh svoistv parafinovykh uglevodorodov. Moscow 
1960; V. M. Tatevskii and Yu. G. Papulov, Zhur. Obshchei Khim. 34, 241,489, 708 (1960) 

7. Papulov, Yu. G., Chulakova, L. V., Levin, V. P., Smolyakov, V. M. : Zhur. Fiz. Khim. 
48, 31 (1974); Bernstein, H. J.: J. Chem. Phys. 19, 140 (1951); 20, 263, 351 (1953); J. 
Phys. Chem. 69, 1550 (1965) 

8. Gordon M., Scantlebury, G. R.: Trans. Faraday Soc. 60, 605 (1964) 
9. Altenburg, K. : Kolloid Z. 178, 112 (1961); Brennstoff Chem. 47, 100, 331 (1966) 

10. Hosoya, H.: Bull. Chem. Soc. Japan 44, 2332 (1971); Internat. J. Quantum Chem. 6, 
801 (1972); J. Chem. Doc. 12, 181 (1972); Chem. Letters (Japan) 65 (1972); Fibonacci 
Quart. 3, 255 (1973) 

11. Hosoya, H., Kawasaki, K., Mizutani, K.: Bull. Chem. Soc. Japan 45, 3415 (1972) 
12. Mizutani, K., Kawasaki, K., Hosoya, H.: Nat. Sci. Rept. Ochanomizu Univ. (Japan) 

22, 39 (1971) 
13. Kawasaki, K., Mizutani, K., Hosoya, H.: Nat. Sci. Rept. Ochanomizu Univ. (Japan) 

22, 181 (1971) 
14. Hosoya, H., Murakami, M., Gotoh, M.: Nat. Sci. Rept. Ochanomizu Univ. (Japan) 24, 

27 (1973) 
15. Gutman, I., Rusci6, M., Trinajsti6, N., Wilcox, C. F., Jr.: J. Chem. Phys. 62, 3399 (1975) 
16. Randi6, M.: J. Am. Chem. Soc. 97, 6609 (1975) 
17. Muirhead, R. F. : Proc. Edinburgh Math. Soc. 19, 36 (1901); 21, 144 (1903); 24, 45 (1906) 
18. Gutman, I., Randi6, M.: Chem. Phys. Letters 47, 15 (1977) 
19. Ruch, E., Sch6nhofer, A.: Theoret. Chim. Acta (Berl.) 19, 225 (1970); Ruch, E.: Theoret. 

Chim. Acta (Berl.) 38, 167 (1975); Ruch, E., Mead, A.: Theoret. Chim. Acta (Bed.) 41, 
95 (1976) 

20. Randi6, M., Wilkins, C. L. to appear 
21. Randi6, M.: J. Chem. Phys. 60, 3920 (1974); 62, 309 (1975); J. Chem. Info. Comp. Sci. 

15, 105 (1975); Chem. Phys. Letters 42, 283 (1976) 
22. Hall, L. H., Kier, L. B., Murray, W. J.: J. Pharm. Sci. 64, 1974 (1975) 
23. Murray, W. J., Hall, L. H., Kier, L. B. : J. Pharm. Sci. 64, 1978 (1975) 
24. Kier, L. B., Murray, W. J., Hall, L. H. : J. Med. Chem. 18, 1272 (1975) 
25. Kier, L. B., Hall, L. H., Murray, W. J., Randi6, M. : J. Pharm. Sci. 64, 1971 (1975) 
26. Kier, L. B., Hall, L. H. : Molecular connectivity in chemistry and drug research. New 

York: Academic Press 1976 



Chemical Graphs 375 

27. Nizhnii, S. V., Epstein, N. A.: Usp. Khim. 47, 739 (1978) 
28. Balaban, A. T., Chiriac, A., Motoc, I., Simon, Z.: Lecture Notes in Chemistry, in press 
29. Kier, L. B., Murray, W. J., Randi6, M., Hall, L. H.: J. Pharm. Sci. 65, 1226 (1976) 
30. Rouvray, D. H., Crafford, B. C.: South African J. Sci. 72, 47 (1976) 
31. Lovasz, L., Pelikan, J.: Period. Math. Hung. 3, 175 (1973) 
32. Bonchev, D., Trinajsti6, N.: J. Chem. Phys. 67, 4517 (1977) 
33. Kowits, E.: Z. Analyt. Chem. 181, 351 (1961) 
34. KiSnig, D.: Theorie der endlichen und unendlichen Graphen, p. 64. Leipzig: Akad. Ver- 

lagsges 1936; reprinted Chelsea, New York, 1950 
35. Harary, F.: Graph theory. Reading, Mass.: Addison-Wesley 1972: a), p. 35; b), p. 57; c), 

p. 233. 
36. Neville, E. H.: Proc. Cambridge Phil. Soc. 49, 381 (1953) 
37. Read, R. C.: The coding of trees and tree-like graphs; Read, R. C., Milner, R. S.: A 

new system for the designation of chemical compounds for the purposes of data retrieval. I. 
Acyclic compounds" (Preprints, University of the West Indies, Jamaica, 1969) 

38. Lederberg, J., Sutherland, G. L., Buchanan, B. G., Feigenbaum, E. A., Robertson, A. V., 
Duffield, A. M., Djerassi, C.: J. Am. Chem. Soc. 91, 2973 (1969); Lederberg, J., in: The 
mathematical sciences, p. 37. Cambridge, Mass.: The M.I.T. Press 1969 

39. Wiswesser, W. J.: A line-formula chemical notation. New York: T. Y. Crowell 1954 
40. Dyson, G. M.: A new notation for organic chemistry. London: Chem. Soc. 1946; 

I.U.P.A.C.: Rules for I.U.P.A.C. notation for organic compounds. London: Longmans, 
Green and Co. 1961 

41. Balaban, A. T.: Rev. Roumaine Chim. 11, 1097 (1966); 15, 463 (1970) 
42. Woolley, R. G. : Advan. Phys. 25, 27 (1976); J. Am. Chem. Soc. 100, 1073 (1978) 
43. Balaban, A. T., Mot.oc, I.: Math. Chem., 5, 197 (1979) 
44. Bonchev, D., Balaban, A. T., Mekenjan, O.: to be published 
45. Balaban, A. T., Bonchev, D., Mekenjan, O. : to be published 
46. Bonchev, D., Knop, J. V., Trinajsti6, N.: to appear 

Received March 6, 1979 


